1、 我们知道阿拉伯数字9原是印度人发明的,13世纪后期传入中国,人们误认为0也是印度人发明的。其实印度起先发明时没有“0”,他们把“204”,写成“24”,中间空着,把200写成“24”,怎么区别中间有几个零呢?为了避免看不清,就用点“·”来表示,204写成“4”,那不和小数混淆了?直到公元876年才把“0”确定下来。
2、骑自行车的时候用脚蹬一圈脚踏板自行车行走的米数。我们可以去测量车轮的半径,再用圆的周长公式求出来。
3、孩子不笨,而是家长方法笨!90%家长都在用笨方法“教笨”孩子!
4、这下确实把我愣住了,因为我怎么思考都感觉此时的概率是1/因为这种情况不就等于是排出了一扇门,在两扇门里作出选择吗,二选一究竟怎么得出个2/3来的?无苦苦挣扎,就是跳不出的死循环。
5、初中数学110分以上,必须掌握的辅助线口诀,拿去收藏不谢
6、冬天,猫睡觉时总是把身体抱成一个球形,是因为这样身体散发的热量最少。
7、这个问题会一度被广泛讨论的最大原因在于人为限制,为何这么说,先从问题本身分析。
8、人们对此感到吃惊的原因之一是,他们对两个特定的人拥有相同的出生时间和任意两个人拥有相同生日的概率问题感到困惑不解。两个特定的人拥有相同出生时间的概率是三百六十五分之回答这个问题的关键是该群体的大小。随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。
9、莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。可以用一根纸条扭转成180度后,两头再粘接起来,就形成了莫比乌斯环。
10、切西瓜问题:三刀切7瓣,吃完剩下8块皮,怎么切?
11、首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
12、当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。
13、(5) "4"是唯一的数字,当用英语书写时,其拼写包含的字母数量与数字本身相同。
14、切豆腐问题:一块豆腐切三刀,最多能切几块?
15、《算经十书》中国汉唐以来陆续出现的十部数学著作的汇编册。唐代在国立大学设置了算学,以十部数学著作作教科书使用。这十部算经是:《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《张邱建算经》、《海岛算经》、《五经算术》、《缀术》、《辑古算经》。
16、抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。
17、每课一练、每周一练、高考真题,你取之不尽用之不绝的免费资料库。
18、笛卡儿堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之被誉为“近代科学的始祖”。所建立的解析几何在数学史上具有划时代的意义。
19、其实数学是非常有趣的,大家一定要开心学数学!
20、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。
21、我的思路是这样的:洗衣液一共四袋,每袋5元,所以直接用乘法就行了;卫生纸一共十包,每包5元,只需要把这个小数的小数点向右移动一位来算便行了;自动铅笔只有一支,在最后时加上便可以了;还有三支钢笔,也用乘法来算。
22、网友果然是万能,连解题方法都是五花八门,果然做数学题不能死脑筋呀,我还是太嫩了,得多学学。
23、你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
24、到了收银台,我们一共买了如下商品:四袋洗衣液,一袋5元;十包卫生纸,一包5元;一支自动铅笔,一支5元;三支钢笔,一支5元。
25、数学无时无处不存在,我们将数学使用在生活中,为我们的生活提供了很大的便利;老师将数学和工作联系在一起,为他们圆满完成工作提供了保障;科学家将数学和科学结合起来,为我们的科技水平的提高作出了伟大贡献。
26、把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。
27、传说早在四千五百年前,我们的祖先就用刻漏来计时。
28、例如:在教学《克和千克的认识》:一开始就从学生身边选择素材并制成录像片段作为课堂引入,这三段录像分别是学生称体重、农民卖菜和在水果摊买水果。使学生通过对熟悉的生活场景的回顾,感受到质量与我们生活的密切联系,消除对这一知识的距离感。
29、先从家里开始吧,我们平时用的时钟,有的上面只有四个数字,分别是呵呵,都是三的倍数呢!但事实可没这么简单,原来,这四个数字,从12开始,每转到一个数字,就增加四分之一时,这样,就十分好计算,再说这四个数字在钟表上的排列,位置不是互相平行,就是相差九十度,连起来正好是一个十字,看起来十分美观。
30、由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。
31、将两枚一样的硬币放在一起,固定住其中一枚硬币,使另一枚硬币绕其旋转,那么,旋转的硬币究竟要转多少圈才能转回原来的位置呢。
32、加减号“+”、“-”—五百年前德国人最先使用的。据说,当时酒商在售出酒后,曾用横线标出酒桶里的存酒,而当桶里的酒又增加时,便用竖线条把原来画的横线划掉。于是就出现用以表示减少的“-”和用来表示增加的“+”。
33、假设你在参加一个由50人组成的婚礼,有人或许会问:我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”
34、猫缩成一个球体,可以减小和外界接触的面积,降低热交换的速度,减少热量损失的速度,节省能量,保持体温。
35、◆一年级数学上教学顺口溜合集,打印给孩子记记背背!
36、"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
37、首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。
38、知错能改,答疑解惑,错例评析——学习的方式多种多样;趣味数学,活色生香,他山之石——不仅仅只有数学,还有诗和远方,金爸爸和你一同分享。
39、◆一年级语文《看图写话》复习资料,给孩子做做看!
40、一根绳子,从一端开始燃烧,烧完需要1小时。现在要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。
41、代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是这是正向思维。这些数,需要做的只是把它们加起来。在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“很多”延伸到今天所使用的高度复杂的十进制表示方法。
42、我们的身体真得很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。计算9的倍数时,将手放在膝盖上,如下图所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×只要弯曲标有数字7的手指,然后数左边剩下的手指数是右边剩下的手指数是将它们放在一起,得出7×9的答案是
43、在数学中,体积一定,表面积最小的物体是球体。
44、欧几里得最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。
69